
Sequences and Series of Functions (Rudin)

Stone-Weierstrass Theorem: Let f : [a, b] → R be continuous. Then
there exists a sequence of polynomials (Pn(x)) such that converges uniformly
to f on [a, b].

Proof: Consider any continuous function g : R → R that satisfies g(x) = 0
for x 6∈ [0, 1]. For each n ≥ 1 set

Qn(x) =
(1− x2)n∫ 1

−1 (1− x2)n dx
.

The area under the curve y = Qn(x) over [−1, 1] is equal to 1, and has the
shape of a bell curve with most of it’s area concentrated in a narrow band
above x = 0. The polynomials Q10(x), Q20(x), Q30(x) are plotted below:
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For 0 ≤ x ≤ 1 define

Pn(x) =

∫ 1

−1
g(x+ t)Qn(t) dt.

Pn(x) is a polynomial of degree ≤ 2n:∫ 1

−1
g(x+ t)tk dt =

∫ x+1

x−1
g(u)(u− x)k du =

k∑
i=0

(−1)i
(
k

i

)
xi
∫ x+1

x−1
g(u)uk−i du.

We have

|Pn(x)− g(x)| ≤
∫ 1

−1
|g(x+ t)− g(x)|Qn(t) dt.
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Let M = sup g(x). Since g is uniformly continuous on R, there exists δk > 0
such that |t| < δk implies |g(x+ t)− g(x)| ≤ 1

k
for all x. This yields

|Pn(x)− g(x)| ≤ 2M

∫ −δk
−1

Qn(t) dt+
1

k

∫ δk

−δk
Qn(t) dt+ 2M

∫ 1

δk

Qn(t) dt.

We have
1

k

∫ δk

−δk
Qn(t) dt ≤ 1

k
.

We also have ∫ 1

−1
(1− x2)n dx ≥ 2

∫ 1

0

(1− x)n dx =
2

n+ 1
,

hence for δk ≤ |x| ≤ 1 we have

|Qn(x)| ≤ n+ 1

2
(1− δ2k)n.

Therefore

|Pn(x)− g(x)| ≤ 2M(n+ 1)(1− δ2k)n +
1

k

for 0 ≤ x ≤ 1, i.e.

||Pn − g|| ≤ 2M(n+ 1)(1− δ2k)n +
1

k
.

Let ε > 0 be given. Choose k so that 1
k
< ε

2
. For sufficiently large n,

2M(n+ 1)(1 − δ2k)n < ε
2
, hence ||Pn − g|| < ε. Therefore Pn → g uniformly

on [0, 1].

Given f : [a, b] → R, g(x) = f(x) − f(a) − f(b)−f(a)
b−a (x − a) satisfies g(a) =

g(b) = 0 and h(x) = g((b − a)x + a) satisfies h(0) = h(1) = 0. If Pn(x) →
h(x) uniformly on [0, 1], then Pn(x) → g((b − a)x + a) on [0, 1], therefore
Pn(x−a

b−a )→ g(x) uniformly on [a, b], therefore

Pn(
x− a
b− a

) + f(a) +
f(b)− f(a)

b− a
(x− a)→ f(x)

uniformly on [a, b].
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Corollary: If f(0) = 0 and Pn(x)→ f uniformly on [−a, a], then Pn(0)→ 0,
hence Pn(x) − Pn(0) → f uniformly on [−a, a]. So f can be uniformly
approximated by a polynomial with zero constant term.

Defintion: An algebra A of functions f : E → R is a set of functions closed
under addition, multiplication, and scalar multiplication. An algebra A is
said to separate points on E if for each x 6= y in E there exist f, g ∈ A such
that f(x) 6= g(y), and to vanish at x ∈ E if f(x) = 0 for all f ∈ A.

Theorem: Let A be an algebra of bounded functions from E to R. Let
||f || = supx∈E f(x). Then d(f, g) = ||f − g|| is a metric on A and A is an
algebra of bounded functions from E to R.

Proof: Clearly ||f − f || = 0, f 6= g =⇒ ||f − g|| > 0, ||f − g|| = ||g − f ||.
Now let f, g, h ∈ A be given. For any x ∈ E,

|f(x) + g(x)| ≤ |f(x)|+ |g(x)| ≤ ||f |+ ||g||,

therefore ||f + g|| ≤ ||f ||+ ||g||. This implies

||f − h|| = ||(f − g) + (g − h)|| ≤ ||f − g||+ ||g − h||.

Also, for any x ∈ E,

|f(x)g(x)| ≤ ||f |||g(x)| ≤ ||f ||||g||,

therefore ||fg|| ≤ ||f ||||g||. Clearly ||cf || = |c|||f || for all c ∈ R.

Now suppose fn → f , gn → g, and c ∈ R. Then

||fn + gn − f − g|| = ||fn − f ||+ ||gn − g|| → 0,

hence fn + gn → f + g. Also,

||fngn−fg|| ≤ ||fngn−fng||+||fng−fg|| ≤ ||fn||||gn−g||+||fn−f ||||g|| → 0,

therefore fngn → fg. Finally,

||cfn − cf || = |c|||fn − f || → 0,

therefore cfn → cf .

Given fn → f , for any x ∈ E we have

|f(x)| ≤ |f(x)− fn(x)|+ |fn(x)| ≤ ||f − fn||+ ||fn|| ≤ 1 + ||fn||
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for n ≥ n0. Therefore ||f || ≤ 1 + ||fn0||.

Lemma: Let u 6= v ∈ Rn and a, b ∈ R be given. Then there exists
p(x1, . . . , xn) ∈ R[x1, . . . , xn] such that p(u) = a and p(v) = b.

Proof: Set q(x1, . . . , xn) = x21 + · · ·+ x2n + 1. Since u 6= v, xk(u) 6= xk(v) for
some k. We can set

p(x1, . . . , xn) =
aq(x1, . . . , xn)(xk − vk)
q(u1, . . . , un)(uk − vk)

+
bq(x1, . . . , xn)(xk − uk)
q(u1, . . . , un)(vk − uk)

Theorem: Let K ⊆ Rn be a compact set. Then a function f : K → R is
continuous if and only if there exists a sequence (fn) in R[x1, . . . , xn] such
that fn → f uniformly on K.

Proof: Let A be the set of polynomial functions on K. Suppose fn → f
uniformly, where each fm ∈ A. Then f is continuous: Let ε > 0 be given.
Choose n so that ||fn − f || < ε

3
. Since fn is continuous on K and K is

compact, fn is uniformly continuous on K, hence there exists δ > 0 such
that |x− y| < δ implies |fn(x)− fn(y)| < ε

3
. Hence |x− y| < δ implies

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| ≤

||f − fn||+
ε

3
+ ||fn − f || < ε.

Conversely, let f : K → R be continuous. We will show that f ∈ A as
follows:

1. For all g ∈ A, |g| ∈ A. Proof: Let g ∈ A and ε > 0 be given. Choose
a polynomial P (x) with zero constant term such that ||P (x) − | · ||| < ε

2
on

[−||g||, ||g||]. Then ||P (g)− |g||| < ε
2
. Given gn → g, we have P (gn)→ P (g).

Choose n so that ||P (gn) − P (g)|| < ε
2
. Hence ||P (gn) − |g||| < ε. Since

P (gn) ∈ A, |g| ∈ A.

2. If g, h ∈ A, then max(g, h) ∈ A and min(g, h) ∈ A. Proof:

max(g, h) =
g + h

2
+
|g − h|

2
,

min(g, h) = g + h−max(g, h).
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3. Fix x ∈ K. Then there exists fx ∈ A such that fx(x) = f(x) and

fx(k) > f(k)− ε

for all k ∈ K. Proof: For each y ∈ K choose gy ∈ A such that gy(x) = f(x)
and gy(y) = f(y). Then y ∈ (gy − f)−1(ε,∞), hence

K =
⋃
y∈K

{(gy − f)−1((−ε,∞)) : y ∈ K},

hence by compactness of K there exist y1, . . . , ya ∈ K such that for each
k ∈ K there exists i such that gyi(k) > f(k) − ε. We can set fx =
max(gy1 , . . . , gya). In particular, fx(x) = x.

4. We x ∈ (fx − f)−1((−∞, ε)) for each x ∈ K, hence

K =
⋃
x∈K

{(fx − f)−1((−∞, ε)) : y ∈ K},

hence by compactness of K there exist x1, . . . , xb ∈ K such that for each k ∈
K there exists i such that fxi(k) < f(k)+ε. Setting fε = min(fx1 , · · · , fxb) ∈
A, we have ||fε − f || < ε. Since ε is arbitrary, f ∈ A.
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